

XL CONGRESSO BRASILEIRO DE SISTEMAS PARTICULADOS

23 a 26 de outubro de 2022 Uberlândia/MG

ANÁLISE DA INFLUÊNCIA DO DIÂMETRO MÉDIO DA BOLHA NA HIDRODINÂMICA DE UM BIORREATOR COLUNA DE BOLHAS ATRAVÉS DA FLUIDODINÂMICA COMPUTACIONAL

ANA CAROLINA B. SILVA^{1*}, MATEUS NORDI ESPERANÇA², ALBERTO C. BADINO¹, RODRIGO BÉTTEGA¹

¹Universidade Federal de São Carlos, Programa de Pós-Graduação em Engenharia Química Departamento de Engenharia Química ²Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Capivari *e-mail: anaborges@estudante.ufscar.br

<u>RESUMO</u> - Biorreatores pneumáticos são equipamentos amplamente utilizados na indústria por proporcionarem adequada transferência de calor e massa, rápida mistura e boa suspensão de sólidos. Neste trabalho foram avaliados numericamente por fluidodinâmica computacional, os efeitos do diâmetro das bolhas na retenção gasosa global ($\bar{\alpha}_G$) e na taxa de cisalhamento média ($\dot{\gamma}_m$) em um biorreator coluna de bolhas. Os resultados obtidos foram comparados com dados experimentais e com aqueles calculados por correlação semiempírica. O modelo Euleriano de dois fluidos foi aplicado nas simulações multifásicas gás-líquido para três diâmetros médios de bolha e vazões específicas de ar de 1,0 a 5,0 vvm. As simulações em que se considerou o menor diâmetro de bolha (4 mm) apresentaram os resultados mais próximos aos dados experimentais, com os maiores valores de $\bar{\alpha}_G$ e $\dot{\gamma}_m$ encontrados para a maior vazão de ar específica aplicada neste estudo (5 vvm).

INTRODUÇÃO

Em bioprocessos submersos, 0 movimento do líquido no interior do reator, marcado por uma dada velocidade de circulação de líquido, gera turbulência no meio reacional. O diâmetro de bolha (d_B) é um parâmetro de extrema importância para a compreensão tanto dos fenômenos de transferência de massa, quanto de movimento. A formação de bolhas em sistemas gás-líquido sofre a influência das operacionais condições (vazão de gás, temperatura e pressão), geometria do equipamento (geometria do aspersor e diâmetro dos orifícios), além das propriedades físicas dos fluidos (densidade, viscosidade, propriedades reológicas, tensão superficial e polaridade). Ainda, a quebra e/ou coalescência de bolhas, que refletem diretamente no tamanho da bolha, fenômenos são que apresentam alta sensibilidade a quaisquer alterações no processo (Kulkarni e Joshi, 2005).

O tamanho da bolha influencia na transferência de massa e nos parâmetros hidrodinâmicos, como a retenção gasosa e a taxa de cisalhamento média. Compreender os fenômenos hidrodinâmicos e de transferência em biorreatores pneumáticos é essencial na análise, projeto, operação e otimização de processos industriais. Em simulações de escoamento multifásico, as forças interfaciais podem desempenhar um papel importante devido à transferência de momento através da interface, e isso influencia fortemente os padrões dinâmicos dos fluidos. Em colunas de bolhas, destacam-se as forças de arrasto, sustentação, dispersão turbulenta e massa virtual (Tabib et al., 2008). Por essas razões, a fluidodinâmica computacional (CFD) tem sido amplamente aplicada na modelagem e simulação desses sistemas de escoamento (Ziegenhein et al., 2017; Yang et al., 2018).

A fluidodinâmica computacional permite simular as transferências de momento, calor e massa em biorreatores com base em alguns parâmetros fundamentais (Yang *et al.*, 2018),

sendo a abordagem Euler-Euler a mais utilizada para modelar o comportamento de biorreatores de coluna de bolhas em fase densa (Laborde-Boutet et al., 2009; Ekambara e Dhotre, 2010; Li e Zhong, 2015), devido ao baixo custo computacional, quando se opera sistemas com grande quantidade de bolhas. Neste trabalho, a retenção gasosa global e a taxa de cisalhamento média de um biorreator coluna de bolhas de seção quadrada foram avaliadas por meio de simulações por CFD e comparadas aos resultados obtidos experimentalmente e por meio de correlações semiempíricas, a fim de se comprovar a validade do modelo matemático aplicado.

METODOLOGIA

Modelagem matemática e simulação CFD

Foi analisado um biorreator de coluna de bolhas de 10 L consistindo de uma coluna de seção transversal quadrada com lados medindo 142 mm, altura total de 755 mm e altura do líquido de 510 mm contendo um aspersor tipo cruzeta de 180 orifícios instalado na base. Simulações e experimentos foram realizados utilizando água como fase líquida e ar atmosférico como fase gasosa, alimentado com vazões específicas de ar variando de 1 a 5 vvm.

O modelo Euleriano de dois fluidos foi usado na modelagem, assumindo todos os fluidos com propriedades constantes, sendo a água considerada como fase contínua (p_L=997 kg.m⁻³, μ_L =8,49.10⁻⁴ Pa. S e σ =0,072 N.m⁻¹) e ar como fase dispersa ($\rho_G=1,2$ kg.m⁻³). Para expressar as forças de arrasto e sustentação, foram adotados os modelos propostos por Grace et al. (1976) e Tomiyama (1998), tomando como constante a tensão superficial (σ) . A turbulência foi calculada com o modelo padrão ĸ-ɛ, sendo utilizados os valores das constantes de Cµ=0,09, C ϵ_1 =1,44, C ϵ_2 =1,92, $\sigma k=1$ e $\sigma \epsilon=1,3$. A condição de contorno para a injeção de ar foi definida como a velocidade prescrita na superfície que representa os orifícios do aspersor, com valores variando de 4.57 22.86 m/s em cada orifício. a compreendendo as vazões de ar de 1 a 5 vvm. Além disso, foi considerada pressão de saída prescrita (1 atm) no topo do biorreator e condição de não-deslizamento nas paredes, para ambas as fases.

Um tempo de 5 segundos foi simulado nos arranjos propostos com intervalo de tempo fixo de 10^{-4} s e 25 iterações por passo de tempo. O critério de convergência adotado foi RMS< 10^{-4} . A configuração geral da simulação por CFD está descrita na Tabela 1. O *software* Ansys Fluent® 14.5 foi usado para resolver as equações governantes. O *hardware* utilizado consistiu em um computador equipado com um processador AMD Ryzen 7 3700x de 8 núcleos (3,59 GHz, 32 GB de RAM).

Tabela 1: Modelos e parâmetros numéricos das simulações realizadas.

Informação	Condição usada	
Modelo multifásico	Euler	
Modelo de turbulência	κ-ε standart	
Gravidade	9,81 m/s ²	
Tensão superficial	0,072 N/m	
Interpolação para Eq. Momento	Second Order Implicit	
Interpolação para Eq. Fração Volumétrica	First Order Upwind	
Interpolação para Eq. Energia Cinética Turbulenta	Second Order Upwind	
Interpolação para Eq. Taxa Dissipação Cinética	Second Order Upwind	
Regime Transiente	25 iterações/time step, time step=10 ⁻⁴ s, 50.000-time steps, tempo simulado=5 s	
Fatores de Relaxação	entre 0.5 e 1.0	

O biorreator, as geometrias do aspersor e a malha computacional estão ilustrados na Figura 1 e foram gerados usando as ferramentas *Design Modeler* e *Meshing*, ambas da suíte *Workbench* incluída no pacote Ansys®. Uma malha estruturada composta por elementos hexaédricos foi gerada, na qual o espaçamento mínimo entre nós foi definido como 0,5 mm na região do aspersor e 4 mm ao longo do reator. A malha apresentou valores de assimetria inferiores a 0,5 e valores de qualidade ortogonal superiores a 0,8, indicando uma boa qualidade da malha. Ainda, os elementos da malha apresentaram valores de razão de aspecto inferiores a 1,9, o que confirmou a qualidade da malha utilizada.

Figura 1: (a) Geometria computacional do biorreator de coluna de bolhas; (b) aspersor tipo cruzeta de 180 orifícios; (c) Detalhes da malha.

As conservações da massa e do momento para uma fase genérica i são representadas pelas Equações 1 e 2, respectivamente.

$$\frac{\partial}{\partial t} (\alpha_{i} \cdot \rho_{i}) + (\alpha_{i} \cdot \rho_{i} \cdot v_{i}) = 0$$
⁽¹⁾

$$\begin{split} &\frac{\partial}{\partial t} \left(\alpha_{i} \cdot \rho_{i} \cdot v_{i} \right) + \nabla \cdot \left(\alpha_{i} \left(\rho_{i} \cdot v_{i} \otimes v_{i} \right) \right) = -\alpha_{i} \cdot \\ &\nabla P_{i} + \nabla \cdot \left(\alpha_{i} \cdot \mu_{eff,i} (\nabla v_{i} + (\nabla v_{i})^{T}) \right) + \alpha_{i} \cdot \rho_{i} \cdot \\ &g \cdot M_{i} \end{split}$$
(2)

A turbulência foi modelada usando o modelo padrão k- ε , pois oferece resultados precisos e requer esforço computacional moderado, sendo um método estável e robusto (Rodriguez *et al.*, 2015). As equações de transporte para a energia cinética turbulenta (k) e sua taxa de dissipação (ε) são descritas pelas Equações 3 e 4:

$$\frac{\partial}{\partial t} (\alpha_{i} \cdot \rho_{i} \cdot k_{i}) + \nabla \cdot \left(\alpha_{i} \left(\rho_{i} \cdot v_{i} \cdot k_{i} - \left(\mu_{i} + \frac{\mu_{t,i}}{\sigma_{k}} \right) \nabla k_{i} \right) \right) = \alpha_{i} \cdot \left(P_{i} - \rho_{i} \cdot \varepsilon_{i} \right)$$
(3)

$$\frac{\partial}{\partial t} (\alpha_{i} \cdot \rho_{i} \cdot \varepsilon_{i}) + \nabla \cdot (\alpha_{i} \cdot \rho_{i} \cdot v_{i} \cdot \varepsilon_{i} - (\mu_{i} + \mu_{t,i})) = \alpha_{i} \cdot \frac{\varepsilon_{i}}{k_{i}} (C_{\varepsilon 1} \cdot P_{i} - C_{\varepsilon 2} \cdot \rho_{i} \cdot \varepsilon_{i})$$
(4)

sendo C ϵ_1 , C ϵ_2 , σk e $\sigma \epsilon$ constantes do modelo padrão k- ϵ .

Na modelagem matemática, as forças interfaciais de arrasto e sustentação foram representadas por correlações que estimam seus coeficientes. O coeficiente de arrasto (C_D) foi estimado de acordo com a Equação 5 (Grace *et al.* (1976), que considera as diferentes formas de bolhas, como esféricas (Equação 6), touca (Equação 7) e elipses (Equação 8).

$$C_{\rm D} = \max\left(C_{\rm D}^{\rm sphere}, \min\left(C_{\rm D}^{\rm ell}, C_{\rm D}^{\rm cap}\right)\right)$$
(5)

$$C_{\rm D}^{\rm sphere} = \frac{24}{{\rm Re}_{\rm b}} \left(1 + 0.15 {\rm Re}_{\rm b}^{0.687}\right) \tag{6}$$

$$C_{\rm D}^{\rm cap} = \frac{8}{3} \tag{7}$$

$$C_{\rm D}^{\rm ell} = \frac{4}{3} \frac{\mathrm{gd}_{\rm B}}{\mathrm{v}_{\infty}^2} \frac{(\rho_{\rm L} - \rho_{\rm G})}{\rho_{\rm L}}$$
(8)

A força de sustentação pode ser correlacionada com a velocidade relativa e a velocidade da fase líquida, sendo expressa pela Equação 9. Esta força age lateralmente ao escoamento em objetos assimétricos, sendo que no caso das bolhas presentes em um biorreator pneumático, a força de sustentação é uma das responsáveis por movimentar as bolhas na direção radial (Rodriguez, 2015).

$$F_L = C_l \alpha_l \rho_g \left(\vec{v}_l - \vec{v}_g \right) \cdot \nabla \cdot \vec{v}_g \tag{9}$$

O coeficiente de sustentação foi estimado por meio de correlações propostas na literatura. Neste estudo, foi utilizado o coeficiente descrito pela Equação 10 (Tomiyama, 1998), pois se refere a sistemas ar-água, aplicando-se a bolhas deformáveis, sendo dependente do número de Eötvos (Equação 11).

$$C_{L} = \begin{cases} \min[0.288 \tanh(0.121 \text{Re}_{b}; f(\text{E}\ddot{o}))] \\ f(\text{E}\ddot{o}) & 4 < \text{E}\ddot{o} \le 10 \\ -0,27 & 10 < \text{E}\ddot{o} \end{cases}$$
(10)

$$E\ddot{o} = \frac{(\rho_L - \rho_G)g{d_b}^2}{\sigma}$$
(11)

As condições simuladas foram descritas como estudos de caso e são apresentadas na Tabela 2. Para entender a nomenclatura, o estudo de caso LF5-1, por exemplo, considera as seguintes condições $d_B=5$ mm e $\phi_{ar}=1$ vvm, respectivamente.

Tabela 2: Nomenclatura dos casos simulados utilizando a fluidodinâmica computacional

Caso	Diâmetro da bolha (mm)	Vazão (vvm)
LF4-1	4	1
LF4-3		3
LF4-5		5
LF5-1	5	1
LF5-3		3
LF5-5		5
LF6-1		1
LF6-3	6	3
LF6-5		5

Retenção Gasosa Global ($\overline{\alpha}_{G}$)

A retenção gasosa global foi obtida experimentalmente pelo método de medida das alturas descrito e utilizado por Thomasi *et al.* (2010). Valores de retenção gasosa global ($\overline{\alpha}_G$) foram obtidos para vazões específicas de alimentação de ar de 1,0; 3,0 e 5,0 vmm e calculados através da Equação 11, na qual H_D e H_L referem-se às alturas da dispersão gás– líquido e do líquido, respectivamente.

$$\overline{\alpha}_{\rm G} = \frac{{\rm H}_{\rm D} - {\rm H}_{\rm L}}{{\rm H}_{\rm D}} \tag{11}$$

Os níveis de líquido (H_L) e da dispersão (H_D) foram obtidos a partir de imagens obtidas com uma câmera modelo *Nikon D5200*. Os ensaios foram realizados em triplicata. Os valores de retenção gasosa global obtidos a partir das simulações de fluidodinâmica computacional foram calculados adotando-se um volume médio para a distribuição da fração volumétrica de gás em todo o volume do biorreator.

Taxa de Cisalhamento Média ($\dot{\gamma}_m$)

Os valores de $\dot{\gamma}_m$ foram estimados por meio da correlação semiempírica proposta por Pérez et al. (2006) na qual, para reatores colunas de bolhas, a única fonte de agitação é a entrada de energia pneumática fornecida pela expansão isotérmica do gás que entra pelo aspersor. Nesta correlação P_G , k e n referem-se ao consumo de potência e aos índices de consistência e escoamento do líquido, respectivamente. Para tais casos, a taxa de cisalhamento média depende exclusivamente da velocidade superficial do gás e das propriedades reológicas do fluido, considerando os dados experimentais de retenção gasosa ($\bar{\alpha}_G$), conforme Equação 12.

$$\dot{\gamma}_{\rm m} = \left(\frac{1}{K} \frac{{\rm P}_{\rm G}}{{\rm V}}\right)^{\left(\frac{1}{{\rm n}+1}\right)} \tag{12}$$

Os valores da taxa de cisalhamento média $(\dot{\gamma}_m)$ foram também obtidos numericamente, adotando o procedimento de média de volume para a distribuição espacial da taxa de cisalhamento $(\dot{\gamma})$ em todo o domínio computacional.

RESULTADOS E DISCUSSÃO

Os resultados das simulações em termos de retenção gasosa global ($\overline{\alpha}_G$) em função da vazão específica de ar (ϕ_{ar}) estão ilustrados na Figura 2 e comparados aos resultados obtidos experimentalmente.

Figura 1 - Retenção gasosa global ($\bar{\alpha}_G$) em função da vazão específica de ar (ϕ_{ar}).

Analisando a Figura 2, para os três diâmetros de bolhas estudados, o diâmetro de 4

mm demonstrou maior concordância com os valores obtidos experimentalmente.

As porcentagens obtidas de fração volumétrica global foram de 4,63; 11,94 e 14,83% para os casos LF4-1, LF4-3 e LF4-5, respectivamente. Além disso, observa-se que os diâmetros de 4 e 5 mm apresentaram valores de global próximos, retenção gasosa especialmente para o caso LF5-5, o qual apresentou um valor em torno de 14%. Os menores valores de retenção gasosa global foram encontrados para o diâmetro de 6 mm (LF6-1 a LF6-5), iguais a 4,48; 9,87 e 11,3%, respectivamente. Os resultados de retenção gasosa global ($\overline{\alpha}_G$) em função da vazão específica de alimentação de ar (ϕ_{ar}) obtidos pela fluidodinâmica computacional qualitativamente demonstaram resultados coerentes, visto que o valor da retenção gasosa apresentou-se inversamente proporcional ao diâmetro de bolha.

A Figura 3 apresenta as diferenças relativas entre os resultados simulados e experimentais para a retenção gasosa global $(\bar{\alpha}_G)$ em função dos diâmetros de bolhas no biorreator coluna de bolhas.

Figura 32 - Diferenças relativas entre valores simulados e experimentais de retenção gasosa global ($\bar{\alpha}_G$) em função dos diâmetros de bolhas: (**•**) 1 vvm, (**•**) 3 vvm e (**•**) 5 vvm.

Comparando os resultados simulados de $\bar{\alpha}_G$ com os obtidos experimentalmente, as diferenças relativas (%) dos dados experimentais para o diâmetro de 4,0 mm nas

três vazões empregadas (1, 3 e 5 vvm) foram de 10,0; 1,4 e 2,1% (casos LF4-1 a LF6-5). Para o diâmetro de 5,0 mm, as diferenças relativas encontradas foram de 3,2; 18,0 e 6,4% e, para o maior diâmetro utilizado (6 mm), as diferenças relativas foram de 5,6; 16,2 e 22,2 para os casos LF4-1 a LF6-5. Assim sendo, o diâmetro de 4 mm apresentou resultados simulados mais próximos aos dados experimentais, ou seja, o diâmetro médio experimental, possivelmente, está nesta faixa de valor.

Os resultados obtidos para a taxa de cisalhamento média ($\dot{\gamma}_m$) estão sumarizados na Figura 4.

Figura 43 - Taxa de cisalhamento média $(\dot{\gamma}_m)$ em função da vazão específica de ar (ϕ_{ar}) .

Nas maiores vazões de alimentação de ar (3 e 5 vvm), os valores de taxa de cisalhamento média obtidos por meio de simulação foram inferiores aos valores estimados para todos os diâmetros de bolha (4, 5 e 6 mm). Além disso, observa-se que a taxa de cisalhamento média ($\dot{\gamma}_m$) exibiu menores valores para maiores diâmetros de bolha, sendo estes valores divergentes daqueles estimados pela Equação 12, função da vazão de ar, do consumo de potência e da retenção gasosa.

Os valores encontrados para $\dot{\gamma}_m$ variaram de 9,8 a 17,2 s⁻¹ para o diâmetro de 4 mm, 8,9 a 15,7 s⁻¹para o diâmetro de 5 mm e 7,9 a 13,2 s⁻¹ para o maior diâmetro aplicado (6 mm). Apesar do erro de previsão deste parâmetro aumentar com o aumento da vazão de ar, uma vez que os resultados do CFD levam em conta todo o volume do biorreator, eles apresentaram a mesma ordem de grandeza dos valores obtidos por meio da correlação, a qual utilizou os valores experimentais de retenção gasosa global deste trabalho. Para $\dot{\gamma}_m$, as diferenças relativas encontradas para os diâmetros de 4, 5 e 6 mm, em termos percentuais, foram de 48,7; 33,1 e 25,0%, respectivamente, comprovando que o diâmetro de 4 mm demonstrou resultados mais próximos aos obtidos pela correlação, a qual utiliza dados experimentais deste trabalho. Os resultados encontrados também demonstram a importância da consideração da força de sustentação no modelo matemático utilizado.

Esperança et al. (2019) avaliaram a influência da geometria de biorreatores airlift na taxa de cisalhamento média utilizando diferentes fluidos Newtonianos e não-Newtonianos, considerando somente a força de arrasto. Os autores relataram que, para o sistema água-ar, as taxas de cisalhamento médias obtidas a partir de simulação por CFD divergiram dos valores previstos por correlações que utilizam os perfis de velocidade do líquido, porém os valores apresentaram a mesma ordem de grandeza e comportamento em relação à velocidade do líquido.

CONCLUSÃO

Na comparação entre os diâmetros de bolha médios e constantes utilizados neste estudo (4, 5 e 6 mm), a utilização do menor diâmetro (4 mm) gerou maior concordância entre os resultados estimados por fluidodinâmica computacional e experimentais de retenção gasosa global e calculados por correlação para a taxa de cisalhamento média, sendo os melhores ajustes para o diâmetro de 4 mm observados para a maior vazão específica de ar aplicada neste estudo (5 vvm).

NOMENCLATURA

C_{D}	Coeficiente de arrasto	-
C_D^{elip}	Coeficiente de arrasto para bolhas em formato de elipse	-
C_D^{esf}	Coeficiente de arrasto para bolhas em formato de esfera	-
C_D^{touca}	Coeficiente de arrasto para bolhas em formato de touca	-
$C_{\epsilon 1}$	Constante do modelo de turbulência $\kappa - \epsilon$	-

$C_{\epsilon 2}$	Constante do modelo de turbulência $\kappa - \epsilon$	-
C_{μ}	Constante do modelo de turbulência $\kappa - \epsilon$	-
$C_{\mu p}$	Constante do modelo de turbulência $\kappa - \epsilon$	-
$d_{\rm B}$	Diâmetro das bolhas de ar	mm
h_D	Altura da dispersão gás- líquido	m
h_{L}	Altura do líquido	m
κ	Energia cinética turbulenta	J/kg
α_{G}	Retenção gasosa global	-
3	Taxa de dissipação de energia cinética turbulenta	J/kg
Ým	Taxa de cisalhamento média	s ⁻¹
μi	Viscosidade dinâmica da fase "i"	Pa.s
$ ho_i$	Densidade da fase "i"	kg.m ⁻³

REFERÊNCIAS

- DENG, Z. *et al.* Mass-transfer behaviors in alcohol solutions in an internal-loop airlift reactor of 5-m height. Industrial & Engineering Chemistry Research, v. 50, n. 20, p. 11537–11543, 2011.
- EKAMBARA, K.; DHOTRE, M.T. CFD simulation of bubble column. Nuclear Engineering and Design, 2010, 240: 936-969.
- ESPERANÇA, M.N., MENDES, C.E, RODRIGUEZ, G.Y., CERRI, M.O., BÉTTEGA, R., BADINO, A.C. Average shear rate in airlift bioreactors: searching for the true value, Bioprocess Biosyst. Eng, 2019, 42: 995–1008.
- FREITAS, C.; TEIXEIRA, J. A. Oxygen mass transfer in a high solids loading threephase internal-loop airlift reactor. Chemical Engineering Journal, v. 84, n. 1, p. 57–61, set. 2001.
- GRACE, J.R., WAIREGI, T., NGUYEN, T.H. Shapes and velocities of single drops and bubbles moving freely through

immiscible liquids, Process Saf. Environ. Prot. 1976, 54:167–173.

- KULKARNI, A. A; JOSHI, J. B. Bubble formation and bubble rise velocity in gas - liquid systems: A Review. Industrial & Engineering Chemistry Research, v. 44, p. 5873–5931, 2005.
- LABORDE-BOUTET, C., LARACHI, FA., DROMARD, N., DELSART, O., SCHWEICH, D. CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach. Chemical Engineering Science, 2009, 64: 4399-4413.
- LI, W., ZHONG, W. CFD simulations of hydrodynamics of gas – liquid – solid three-phase bubble column. Powder Technology, 2015, 766-788.
- PAINMANAKUL, P. et al. Effect of surfactants on liquid-side mass transfer coefficients. Chemical Engineering Science, v. 60, n. 22, p. 6480–6491, nov. 2005.
- PEREZ, J. A. S. *et al.* Shear rate in stirred tank and bubble column bioreactors. Chemical Engineering Journal, v. 124, n. 1-3, p. 1-5, 2006.
- RODRIGUEZ, G. Y. Avaliação de parâmetros globais de desempenho de biorreatores pneumáticos através de Fluidodinâmica Computacional. 2015. (Doutorado em Engenharia Química). Departamento de Engenharia Química, Universidade Federal de São Carlos, São Carlos.
- RODRIGUEZ, G.Y., VALVERDE-RAMIREZ, M., MENDES, C.E., BETTEGA, R., BADINO, A.C. Global performance parameters for different pneumatic bioreactors operating with water and glycerol solution: experimental data and CFD simulation, Bioprocess Biosyst. Eng., 2015, 38: 2063–2075.
- TABIB, M. V., ROY, S. A., JOSHI, J. B. CFD simulation of Bubble column-an analysis of interphase forces and turbulence

models. Chem. Eng. J, 2008, 139: 589-614.

- TOMIYAMA, A. Struggle with computational bubble dynamics. Third International conference on multi-phase flow, Lyon, France, 1998.
- THOMASI, S.S., CERRI, M.O., BADINO, A.C. Average shear rate in three pneumatic bioreactors, Bioprocess Biosyst. Eng. 33 (2010), 979–988.
- YANG, G., ZHANG, H., LUO, J., WANG, T. Drag force of bubble swarms and numerical simulations of a bubble column with a CFD-PBM coupled model. Chemical Engineering Science, 2018, 192: 714-724.
- ZIEGENHEIN, T., RZEHAK, R., MA, T., LUCAS, D. Towards a unified approach for modeling uniform and non-uniform bubbly flows. Can. J. Chem. Eng., 2017, 95: 170-179.