

XL CONGRESSO BRASILEIRO DE SISTEMAS PARTICULADOS 23 a 26 de outubro de 2022

Uberlândia/MG

AVALIAÇÃO DAS PROPRIEDADES REOLÓGICAS DE FLUIDO DE PERFURAÇÃO À BASE DE BIODIESEL DE BANHA SUÍNA

ELIANY S. CARDOSO ^{1*}, JANIELE C. JESUS ², ANDRE L. A. SANTOS ³, GABRIEL F. SILVA^{1,2}, JOÃO P. L. SANTOS², ACTO L. CUNHA²

¹Universidade Federal de Sergipe, Programa de Pós-Graduação em Engenharia Química Departamento de Engenharia Química ²Universidade Federal de Sergipe, Núcleo de Graduação em Engenharia de Petróleo ³PETROBRAS, Universidade Corporativa da Petrobras

*e-mail: eliany.cardoso1@gmail.com

RESUMO - Os fluídos de perfuração são dispersões complexas de sólidos, líquidos e gases, usualmente constituídas de duas fases: a dispersante (aquosa ou orgânica) e outra dispersa. Na etapa de perfuração de poços de petróleo auxiliam no transporte de cascalhos até a superfície, estabilização das paredes do poço, conter o influxo de fluido descontrolado, além de lubrificar e resfriar a broca. No presente estudo, avaliou-se as propriedades reológicas de um fluido de perfuração à base de biodiesel proveniente da base orgânica de banha suína, como fase contínua, para preparo de quatro tipos de fluídos de perfuração sintéticos variando a proporção de éster, água, NaCl, argila, emulsificante, oxido de cal e redutor de filtrado. Foram realizadas caracterizações reológicas do fluido de perfuração e analisados a influência da variação da razão óleo/água e viscosidade nas propriedades reológicas do fluido, bem como investigado a influência da temperatura no comportamento reológico dos fluidos de perfuração para as condições: 30 °C, 50 °C e 70 °C e como tais variações se relacionam sobre os parâmetros do modelo de Herschel-Bulkley. O modelo apresentou boa representação dos dados, para faixa utilizada, com R² médio de 0,99, quando fazemos analogias com outros modelo, indicando como melhor modelo a ser usado.

INTRODUÇÃO

Nos últimos anos, os fluidos de perfuração à base de biodiesel têm chamado a atenção de pesquisadores devido à sua biodegradabilidade, baixo custo, alto ponto de fulgor em comparação com outros fluidos de perfuração de base sintética (Aboulrous *et al.*, 2022; Celino *et al.*, 2022).

O crescente aumento da demanda global por petróleo e gás e a diminuição do petróleo e gás e recursos nos poços médios e rasos, impulsionaram a exploração de campos petrolíferos de campos águas profundas e ultraprofundos, que apresentam requisitos mais elevados para fluidos de perfuração (Ning *et al.*, 2010; Huang *et al.*, 2021).

As grandes empresas no seguimento de óleo e gás buscam desenvolver fluidos de perfuração de base sintética capazes atender às novas exigências ambientais, requisitos de biodegradabilidade para os cascalhos de perfuração, visto que o diesel e os óleos minerais na sua maioria não atendem na sua totalidade (Jha *et al.*, 2013, Aboulrous *et al.*, 2022)

Nesse contexto o biodiesel é uma fonte de energia renovável obtido a partir da reação química de transesterificação e tem aplicabilidade na composição de fluidos de perfuração petróleo aquosos devido às suas propriedades de estabilização, áreas argilosas sensíveis à água e para evitar a formação de hidratos (Celino *et al.*, 2022).

A seleção do melhor fluido para satisfazer as condições de forma antecipada minimizará os custos do poço e reduzirá o risco de catástrofes envolvendo cascalhos, como tubos de perfuração presos, faturamento da formação e perda da circulação induzida por excesso de sólidos no anular do poço (Pereira, 2014).

A determinação das propriedades dos fluidos de perfuração é de fundamental importância no acompanhamento do fluido durante sua aplicação no poço, para definição de tratamento através de teste-piloto, e em trabalho de pesquisa e desenvolvimento de novas formulações, tanto em sondas como em laboratórios de pesquisa (Eccard; Maria, 2018).

Este artigo realizou a formulação de quatros tipos fluidos de perfuração constituidos por biodiesel, proveniente da base orgânica de banha suína, como fase contínua e outros componentes. Logo, o presente trabalho tem por objetivo analisar a influência da variação da óleo/água e da viscosidade razão nas propriedades reológicas do fluido de perfuração usado, bem como a influência da temperatura no comportamento reológico dos fluidos de perfuração desenvolvidos em três diferentes temperaturas, a saber: 30°C, 50°C e 70°C e ajustar a equação do modelo reológico de Herschel-Bulkley.

METODOLOGIA

Obtenção da Matéria-Prima

Para a produção do éster foi utilizado como matéria-prima a gordura suína refinada comercial da marca Aurora Alimentos (Banha refinada). O biodiesel foi obtido via método de transesterificação com KOH como catalisador, à aproximadamente 50°C. Utilizando metanol em proporção molar de 6:1 em relação aos óleos e sob agitação por 1 hora. Foi utilizada etapa de decantação com objetivo da remoção da glicerina durante 24h. Foi realizada lavagem com água destilada, previamente aquecida a 90°C Por fim, a amostra purificada foi aquecida a 100°C durante 3 horas para eliminar possíveis traços de umidade e depois armazenadas para posteriores análises.

Caracterização do Biodiesel

Índice de acidez: O índice de acidez foi realizado de acordo com a NBR 14448. E o cálculo do índice de acidez foi feito pela Equação 1.

$$I_{acidez} = \frac{v.f.5,61}{p} \tag{1}$$

Em que f é o fator de correção da amostra de KOH 0,1 mol L⁻¹; v é o volume gasto na titulação (mL); P é o peso da amostra (g); 5,61 = massa referente à solução de KOH 0,1 mol L⁻¹.

<u>Viscosidade</u>: A viscosidade cinemática foi analisada segundo a norma ASTM D445. E a viscosidade cinemática foi calculada pela Equação 2.

$$v = k.t \tag{2}$$

Em que v é a viscosidade cinemática, k é a constante do capilar e t é o tempo medido (em segundos).

Preparo dos Fluidos de Perfuração

A metodologia aplicada na preparação dos fluidos foi escolhida de acordo com a norma PE-5EM-00480-H (Petrobras, 2012), que determina a forma de realização de teste piloto para tratamento ou fabricação de fluidos, conforme descrito a seguir, a preparação foi adaptada para produção de ensaios de menor quantidade:

Inicialmente, em uma balança analítica, foi medida a base orgânica (Biodiesel) em um béquer. Em seguida, foi submetida a uma agitação mecânica (marca Fisatom, modelo 715) para a adição do emulsificante, previamente aferido. Após, a adição do emulsificante, foi adicionada a essa solução, ainda em agitação, em 50 % do volume total do saponificante, de forma lenta para evitar a formação de grumos. Essa solução foi mantida em agitação por cerca de 30 minutos. Após este tempo, foi adicionada uma solução de água e NaCl (salmoura) e, em sequência, a outra metade do saponificante, mantendo a agitação por mais 30 minutos. Por último, foi adicionado os aditivos restantes, primeiro, o redutor de filtrado e, depois, a argila organofílica, agitando por mais 15 minutos. Após isso, o fluido de perfuração foi transferido para um recipiente plástico e armazenado à temperatura ambiente. A Tabela 1 descreve a composição e concentração de cada substância utilizada para o preparo dos fluidos de perfuração.

Tabela 1: Composição dos fluidos de

perfuração.							
Fluido	F1	F2	F3	F4			
Éster	55	60	65	70			
Água (%)	45	40	35	30			
NaCl (mg.L ⁻¹)	$1,5.10^{5}$	$1,5.10^{5}$	$1,5.10^{5}$	$1,5.10^{5}$			
Argila Organofílica (lb.bbl ⁻¹)	2	2	2	2			
Emulsificante (lb.bbl ⁻¹)	10	10	10	10			
Óxido de cal (lb.bbl ⁻¹)	5	5	5	5			
Redutor de filtrado (lb.bbl ⁻¹)	3	3	3	3			

Análise dos Ensaios Reológicos Para Obtenção das Curvas de Fluxo

Com o auxílio do reômetro Discovery Hybrid Rheometers (TA Instruments) foi possível obter curvas de fluxo, curvas de viscosidade e fazer os ajustes de modelos reológicos aos conjuntos de dados. A geometria utilizada foi a de placa paralela diâmetro 20 mm.

Os ensaios reológicos foram realizados em três temperaturas distintas: 30 °C, 50 °C e 70 °C, com o intuito de analisar o comportamento reológico dos fluidos desenvolvidos em diferentes temperaturas. Os fluidos foram submetidos a uma taxa de cisalhamento de 1 s⁻¹ até 720 s⁻¹, em um intervalo de tempo de 20 minutos.

RESULTADOS E DISCUSSÃO

Caracterização do Biodiesel

Os resultados de caracterização do éster usado como matéria-prima estão descritos na Tabela 2.

Propriedades	Biodiesel	Limites ANP
Índice de Acidez (mgKOH.g ⁻¹)	0,2	Máx. 0,5
Viscosidade (mm ² .s ⁻¹)	5,06	3,0 a 6,0

Os valores obtidos nas análises enquadram-se dentro dos limites definidos pela ANP. Logo, o biodiesel utilizado atende aos requisitos para sua utilização como uma base para formulação dos fluidos.

Avaliação das Propriedades Reológicas dos Fluidos

A representação gráfica, ou seja, a curva de fluxo mostra como a tensão cisalhante varia em função da taxa de cisalhamento, e esta define o comportamento reológico dos fluidos viscosos, sendo a equação matemática entre estas duas variáveis, conhecida como equação de fluxo. Os fluidos viscosos podem ser caracterizados, também, através da relação entre a viscosidade e a taxa de cisalhamento, chamada de curva de viscosidade (Machado, 2002).

As Figuras de 1 a 3 representam as curvas reológicas obtidas para os fluidos nas temperaturas de 30 °C, 50 °C e 70 °C, respectivamente.

Figura 1: Influência da variação da razão águaóleo para os fluidos 1,2, 3 e 4 a 30°C

Figura 2: Influência da variação da razão águaóleo para os fluidos 1,2, 3 e 4 a 50°C

Figura 3: Influência da variação da razão águaóleo para os fluidos 1,2, 3 e 4 a 70°C

Verificou-se que o uso do modelo Herschel-Bulkley mostrou excelente representação dos dados para toda a faixa de quando de deformação utilizada taxa comparado com outros modelos. os apresentando coeficientes de correlação linear (\mathbf{R}^2) , que avaliam a qualidade do ajuste, com valores próximos a 1 indicando assim o melhor modelo a ser usado.

O modelo reológico de Herschel-Bulkley engloba três parâmetros τ_0 , denominado de limite de escoamento ou tensão de corte inicial; K, denominado de índice de consistência, que indica o grau de resistência do fluido diante do escoamento e n, denominado de índice de comportamento.

Através das análises dos gráficos de tensão de cisalhamento versus taxa de cisalhamento das Figuras 1, 2 e 3, pode-se verificar que todos os fluidos desenvolvidos apresentam limite de escoamento nas três temperaturas analisadas, ou seja, fluidos que obedecem ao modelo de Herschel-Bulkley necessitam de uma tensão inicial para começar a escoar, indicada pelo parâmetro τ_0 .

Analisando os gráficos, observou-se uma redução significativa nos parâmetros reológicos dos fluidos de perfuração formulados com o aumento da temperatura, bem como uma leve mudança na inclinação das curvas.

De acordo com o observado nas figuras, à medida que a temperatura aumenta com a razão O/A constante, a tensão de cisalhamento diminuiu e quanto maior a razão O/A menor é a tensão de cisalhamento, ou seja, na maior razão O/A e na maior temperatura obteve a menor taxa de cisalhamento. Segundo Canuto (2016), esse efeito acontece porque a temperatura é uma variável importante na estabilização das emulsões tendo como efeito a redução da viscosidade do óleo (fase contínua), o que permite uma coalescência mais rápida e reduz a resistência das películas interfaciais desestabilizando-as, uma vez que influência a solubilidade dos tensoativos.

A fim de observar o comportamento da viscosidade dos fluidos com o aumento da taxa de cisalhamento, foram obtidas as curvas de viscosidade nas três temperaturas de análise: 30 °C, 50 °C e 70 °C nas Figuras de 4, 5 e 6, respectivamente.

Figura 4: Viscosidade aparente dos fluidos 1, 2, 3 e 4 a temperatura de 30 °C

Figura 5: Viscosidade aparente dos fluidos 1, 2, 3 e 4 a temperatura de 50 °C

Figura 6: Viscosidade aparente dos fluidos 1, 2, 3 e 4 a temperatura de 70 °C

Conforme os gráficos das Figuras 4, 5 e 6, foi possível observar que houve uma diminuição da viscosidade aparente de todos os fluidos com o aumento da taxa de cisalhamento, nas três temperaturas de análise, e tomando como base a literatura, os fluidos apresentaram comportamento de fluidos pseudoplásticos, isto é, n<1. Este comportamento é importante para o fluido de perfuração, visto que com o aumento da velocidade de escoamento do fluido dentro da coluna de perfuração, tem-se um aumento da taxa de cisalhamento. e diminuição consequentemente uma da viscosidade deste fluido, pois dentro da coluna necessita-se de uma certa facilidade para o fluido escoar.

Observou-se que dentre os fluidos analisados a maior razão O/A obteve menor viscosidade variando as temperaturas. Analisando os fluidos a 70°C o fluido 4 com a razão 70/30 obteve a menor viscosidade, característica importante no carreamento.

Foram calculados os parâmetros (n, k e τ 0) do modelo reológico proposto para cada fluido e os valores obtidos para a equação de fluxo de Herschel-Bulkley, nas temperaturas de 30, 50 e 70 °C, estão dispostos na Tabela 3.

Tabela 3: Parâmetros da equação de Herschel-Bulkley nas temperaturas de 30, 50 e 70°C.

Temperatura 30°C							
Fluido	n	K	τ_0	\mathbb{R}^2			
F1	0,4140	6,4080	6,9759	0,9889			
F2	0,4290	4,7406	4,9249	0,9893			
F3	0,3397	4,7208	4,6888	0,9954			
F4	0,3638	3,5747	3,2910	0,9954			
Temperatura 50°C							
Fluido	n	K	τ_0	\mathbb{R}^2			
F1	0,3632	5,7638	6,9005	0,9883			
F2	0,3328	5,0837	5,6564	0,9837			
F3	0,3550	2,9199	3,0009	0,9864			
F4	0,3649	2,1159	1,7237	0,9899			
Temperatura 70°C							
Fluido	n	k	$ au_0$	\mathbb{R}^2			
F1	0,3434	5,2655	4,8633	0,9937			
F2	0,3202	3,6287	3,1789	0,9819			
F3	0,3120	2,6912	2,5632	0,9912			
F4	0,3014	2,0025	1,8211	0,9921			

Foi observado através da análise dos parâmetros da equação encontrada na Tabela 3 que, dentre os fluidos analisados, as amostras dos fluidos 3 e 4 apresentaram menores valores de limite de escoamento, nas três temperaturas analisadas. A característica em comum que esses fluidos apresentaram em sua formulação foi a maior razão óleo-água com 65/35 e 70/30 respectivamente, consequentemente fluidos com menor limite de escoamento oferece menor resistência a fluidez.

Observou-se também que os fluidos 1 e 2 preparados com razão O/A de 55/45 e 60/40 respectivamente apresentaram maiores valores de limite de escoamento, uma possível justificativa desse aumento segundo Canuto (2016), é que como o limite de escoamento representa as forças de interação de natureza elétrica partícula-partícula presentes no fluido, maior quantidade de água no sistema, tornou este parâmetro excessivamente elevado.

Comparando os fluidos de perfuração sintéticos preparados, o fluido 4 com a razão de O/A de 70/30 apresentou o menor valor de limite de escoamento, com o aumento da temperatura e fluido 1 com 55/45 de razão apresentou maior valor. Sendo que altos valores de limite de escoamento podem acarretar indução de perda de fluido para a formação durante a perfuração. Portanto, para fluidos utilizando o biodiesel a base éster, dentro da faixa de experimental avaliada, é aconselhável trabalhar com a razão óleo-água no nível codificado (70/30) a fim de evitar problemas parâmetros reológicos relacionados а excessivamente elevados.

Ao observar os valores dos índices de comportamento de fluxo, n, pode-se afirmar que as características pseudoplásticas para todos os fluidos (0 < n < 1). Com a mesma razão O/A e observou que o índice de comportamento diminua com o aumento da temperatura. Quanto menor o valor de n, menor é o valor da viscosidade aparente com o aumento da taxa de cisalhamento, ou seja, menor resistência o fluido apresenta para escoar.

O índice de consistência, o parâmetro K, presente na equação de Herschel-Bulkley indica o grau de resistência do fluido diante do escoamento, ou seja, quanto maior o valor de K mais "resistente" o fluido será, os fluidos com razão O/A 55/45 e 60/40 apresentaram maiores valores para este parâmetro, em todas as temperaturas de análise e a razão O/A 65/35 e 70/ 30 apresentaram menores valores , ou seja, maiores concentrações de água nos sistema levam a maiores valores para o índice de consistência dentro de uma mesma faixa de temperatura.

Com o aumento da temperatura houve uma diminuição nos valores limite de escoamento, índice de consistência e índice de comportamento de fluxo nos fluidos analisados, além da razão O/A afetar na propriedade reológica fica evidente que o acréscimo de temperatura afeta diretamente as propriedades reológica dos fluidos.

CONSIDERAÇÕES FINAIS

Foi possível desenvolver fluidos de emulsão inversa (fase contínua orgânica e dispersa aquosa) utilizando como fase contínua o biodiesel proveniente de base orgânica de banha suína e realizar o estudo da influência de diferentes proporções de óleo/água no comportamento reológico e na estabilidade térmica dos fluidos preparados com biodiesel de banha suína.

Foi analisado o comportamento reológico dos fluidos nas temperaturas de 30 °C, 50 °C e 70 °C, observando-se uma diminuição gradual na tensão de cisalhamento, na viscosidade aparente e no limite de escoamento dos fluidos, conforme o aumento da temperatura. O modelo de Herschel-Bulkley descreveu bem todos os dados reológicos dos fluidos preparados e o índice de comportamento de fluxo e coeficiente de consistência foram obtidos para este modelo.

A análise da influência da razão O/A e da temperatura sobre os parâmetros do modelo de Herschel-Bulkley mostra que quanto maior a razão e à medida que a temperatura da solução aumenta, o parâmetro n e K diminui.

A razão O/A é a única variável que tem efeito significativo na propriedade de tensão limite de escoamento. Foi observado que, quanto maior a proporção de água na formulação, maior será o esforço necessário para o fluido começar a fluir. A razão O/A 65/35 e 70/30, utilizada na formulação dos fluidos 3 e 4, apresentaram os melhores resultados para o limite de escoamento.

REFERÊNCIAS

- ABOULROUS, A. A. Review of synthesis, characteristics and technical challenges of biodiesel based drilling fluids. Journal of Cleaner Production, v. 336, n. August 2021, p. 130, 2022.
- ANP- Agência Nacional de Petróleo, Gás Natural e Biocombustíveis. Resolução nº 45, de 25 de agosto de 2014: estabelece a especificação do biodiesel e as obrigações quanto ao controle da qualidade a serem atendidas pelos

diversos agentes econômicos que comercializam o produto em todo o território nacional.

- CELINO, K. N. Emulsion-based drilling fluids: Rheological properties preservation facing changes on the temperature, pressure and dispersed phase. Journal of Molecular Liquids, v. 352, 2022.
- ECCARD, L. S.; MARIA, S. Análise de parâmetros dos fluidos de perfuração de poços de petróleo. v. 12, n. 2, p. 124–146, 2018.
- HUANG, W. Investigation of regulating rheological properties of water-based drilling fluids by ultrasound. Petroleum Science, n. x, 2021.
- JHA, P. K., MAHTO, V., SAXENA, V.K. Study the rheological and filtration properties of oil-in-water emulsion for its application in oil and gas well drilling. J. Petrol. Eng. Technol. 25–30, 2013.
- MACHADO, J. C. V. Reologia e escoamento de fluidos: ênfase na indústria de petróleo. Rio de Janeiro: Interciência. p. 257, 2002.
- NING, F., ZHANG, L., TU, Y., JIANG, G., SHI, M. Gas-hydrate formation, agglomeration and inhibition in oil-based drilling fluids for deep-water drilling. J. Nat. Gas Chem. 19 (3), 234e240, 2010. <u>https://doi.org/10.1016/S1003-9953(09)</u> 60077-3.
- PEREIRA, A. F. C. Problemas de estabilização de poços petrolíferos: as questões críticas no onshore e no offshore. 2014.
 Dissertação (Mestrado em Engenharia Geológica e de Minas). Universidade Técnica de Lisboa. p. 67, 2014.
- PETROBRAS, Teste piloto para tratamento ou fabricação de fluido: Norma PE-5EM-00480-H, 2012.