

XL CONGRESSO BRASILEIRO DE SISTEMAS PARTICULADOS 23 a 26 de outubro de 2022

Uberlândia/MG

SECAGEM DE RESÍDUO DE MILHO FERMENTADO: ESTUDO DE CASO NA DETERMINAÇÃO DE PARÂMETROS DE TRANSFERÊNCIA DE MASSA

LORENA CADAN^{1*}, ANA C. MEDEIROS¹, ANNA C. L. GONÇALVES¹, PAOLLA S. MELEGARI¹, ALEXANDRE DIÓRIO¹

¹Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá – PR *e-mail: lorenacadan@gmail.com

<u>RESUMO</u> - O milho (*Zea mays* L.) é uma das culturas mais importantes para o Brasil. A elevada produção leva à grande geração de resíduos e uma das maneiras de realizar seu reaproveitamento é utilizá-lo como adsorvente. Assim, o objetivo deste trabalho foi realizar a secagem do resíduo de milho fermentado com ar nas temperaturas de 40, 50 e 60 °C e nas velocidades de 0,82 e 1,97 m/s e ajustar modelos matemáticos aos dados experimentais. Para todas as condições de secagem, o melhor ajuste foi o modelo Dois Termos. Houve aumento da difusividade em relação ao aumento da temperatura e da velocidade, e os valores médios desse parâmetro para as secagens a 0,82 e 1,97 m/s foram de, respectivamente, $2,38 \times 10^{-7}$ e $3,22 \times 10^{-7}$ m² s⁻¹. Ademais, a energia de ativação para um mol de água em difusão no interior do resíduo durante sua secagem foi de 13,14 kJ mol⁻¹ para 0,82 m/s e 31,35 kJ mol⁻¹ para 1,97 m/s. Dessa forma, concluiu-se que a melhor condição de secagem do material foi com ar na temperatura de 60 °C a 1,97 m/s.

INTRODUÇÃO

O milho (Zea mays L.) é uma das culturas mais importantes para o Brasil, podendo ser cultivado em diversas regiões do país. A estimativa nacional de área colhida para safra 2018/2019 foi de 17.254,8 mil hectares produzindo 98,5 milhões de toneladas. A semente de milho é o insumo com alto valor agregado, sua produção é realizada dentro de padrões rigorosos de qualidade, os quais, práticas culturais juntamente com (uso adequado de defensivos e fertilizantes), potencializam o desempenho no campo, maximizando a produtividade (de Araújo et al., 2020).

A elevada produção de milho leva à grande geração de resíduo, como o sabugo, caule, palha e folhas. A produção de resíduos para cada tonelada de milho colhido é de 2,3 toneladas (Instituto Brasileiro das Indústrias de Pellets, Biomassa e Briquete, 2022). No ano de 2013, geraram-se 13,3 milhões de toneladas de resíduo no mundo para

uma produção mundial de 966 milhões de toneladas. O Brasil gerou 960 mil toneladas do resíduo em questão no mesmo ano (de Sales *et al.*, 2015).

Uma das formas de reaproveitamento do resíduo do milho é utilizá-lo como adsorvente. Por isso, faz-se necessário realizar a secagem dele, visto que a remoção da umidade prolonga o tempo de vida útil do material, diminui a deterioração por microrganismos e evita alterações físico-químicas, tais como oxidação (Ferreira, 2022). Além disso, reduzir a composição de água do resíduo de milho aumenta a disponibilidade de sítios livres para a adsorção, aumentando a eficiência do processo (de Oliveira *et al.*, 2001).

O processo de desidratação dos grãos por evaporação é conhecido como secagem. Nessa operação, a passagem de ar quente leva à elevação da temperatura do material e, com isso, a água é transportada do interior para a superfície do grão e da superfície dele para o ar por convecção. Assim, ocorre, simultaneamente, os processos de transferência de calor e de massa (Bortolaia, 2011). Portanto, o objetivo do trabalho foi realizar a secagem do resíduo de milho fermentado com ar nas temperaturas de 40, 50 e 60 °C e nas velocidades de ar de 0,82 e 1,97 m/s, além de ajustar modelos matemáticos aos dados experimentais.

MATERIAIS E MÉTODOS

Materiais

O resíduo de milho fermentado utilizado foi fornecido pela COCAMAR, cooperativa agroindustrial localizada em Maringá-PR. O resíduo foi gerado após o processo de triadeira.

Métodos

<u>Determinação da umidade inicial</u>: A umidade inicial do resíduo do milho foi determinada por meio do método gravimétrico (AOAC, 2005). Para isso, 4 g do material foram colocadas em uma estufa (Fanem 315 SE) a 105 ± 2 °C durante 24 h. A umidade inicial em base seca (X) foi determinada por meio da diferença de massas antes (m_{úmida}) e após (m_{seca}) a etapa de secagem conforme a Equação 1.

$$X = \frac{(m_{\text{úmida}} - m_{\text{seca}})}{m_{\text{seca}}} \tag{1}$$

<u>Secagem em camada delgada</u>: A secagem em camada fina do resíduo de milho ocorreu em um secador convectivo de bancada com fluxo transversal dispondo uma camada fina de 100 g do material em uma peneira. O equipamento possui um soprador de ar com ajuste de velocidade. Além disso, o ajuste da temperatura do ar de secagem ocorre por meio de 4 resistências elétricas controladas por um reostato. O processo de secagem foi conduzido nas temperaturas de 40, 50, 60 °C ± 2 °C medidas com um termopar. A variação mássica das amostras foi medida em balança semianalítica (Gehaka modelo BG 4000 com precisão de 0.01 g) em intervalos regulares de 2 ou 3 min e a cada hora após 4 h de secagem até ser verificada a obtenção de massa constante, ou seja, que o equilíbrio dinâmico da secagem foi atingido. Os dados experimentais de secagem foram adimensionalizados (X_{adm}) conforme apresentado na Equação 2.

$$X_{adm} = \frac{(X - X_e)}{(X_0 - X_e)} \tag{2}$$

Em que X_0 representa a umidade inicial; X representa a umidade no tempo t da secagem; X_e representa a umidade do material no equilíbrio.

<u>Modelos de secagem</u>: Os modelos de secagem apresentados na Tabela 1 foram ajustados aos dados experimentais de secagem, sendo que a qualidade do ajuste foi verificada por meio dos coeficientes de determinação (\mathbb{R}^2) e do chi-quadrado reduzido (χ^2).

Equação	Modelo	Referência	Eq.
$X_{adm} = \exp(-k_1 \cdot t)$	Le	Bruce (1985)	(3)
$X_{adm} = \exp(-k_2 \cdot t^{n_1})$	Pa	Page (1949)	(4)
$X_{adm} = a_1 \cdot (\exp(-k_3 \cdot t^{n_2}))$	HP	Henderson (1974); Wang <i>et al.</i> (2007)	(5)
$X_{adm} = a_2 \cdot \exp(-k_4 \cdot t) + b_1$	LN	Yaldiz <i>et al.</i> (2001); Togrul and Pehlivan (2002)	(6)
$X_{adm} = a_3 \cdot \exp(-k_5 \cdot t^{n_3}) + b_2 \cdot t$	MK	Midili <i>et al</i> . (2002); Hii <i>et al</i> . (2009)	(7)
$X_{adm} = a_4 \cdot \exp(-k_6 \cdot t) + b_3 \cdot \exp(-k_7 \cdot t)$	DT	Rahman <i>et al.</i> (1998); Togrul and Pehlivan (2002)	(8)

Tabela 1: Modelos de secagem em camada fina

Le: Lewis; Pa: Page; HP: Henderson-Pabis; LN: Logarithmic; MK: Midili-Kucuk; DT: Dois Termos.

Os parâmetros k_i, n_i, a_i e b_i representam os parâmetros dos modelos conforme suas respectivas equações e foram determinados por meio dos ajustes lineares ou não lineares de cada modelo, conforme Chen *et al.* (2012). Determinação das taxas de secagem: As curvas de taxas de secagem foram obtidas conforme descrito em Motta Lima *et al.* (2001). Brevemente, o método consiste nas derivadas numéricas dos dados de secagem e emprega o

$$\left. \frac{\Delta X}{\Delta t} \right|_{i} = \frac{(\Delta X/\Delta t)_{i-} + (\Delta X/\Delta t)_{i+}}{2} \tag{9}$$

Em que $(\Delta X/\Delta t)_{i-}$ foi empregado entre os pontos (i-1) e i; $(\Delta X/\Delta t)_{i+}$ foi empregado para os pontos i e (i+1); $(\Delta X/\Delta t)_{i-}$ ou $(\Delta X/\Delta t)_0$ foi empregado para o ponto inicial; e $(\Delta X/\Delta t)_{i+}$ para o equilíbrio.

<u>Curva generalizada de secagem (CGS) e</u> <u>normalizada de taxa de secagem (TSN)</u>: A CGS foi desenvolvida a partir do modelo de Page (1949), conforme descrita na Equação 10, e obtida a partir da generalização dos dados de secagem por meio do tempo adimensional (τ) definido na Equação 11.

$$X_{adm} = \exp\left(-\alpha_1 \cdot \tau^{\beta_1}\right) \tag{10}$$

Em que α_1 e β_1 são os parâmetros do modelo a serem estimados.

$$\tau = \frac{R_{max} \cdot t}{X_0} \tag{11}$$

Em que R_{max} (min⁻¹) representa a maior taxa de secagem observada no instante inicial t=0; t é o tempo de secagem (min); e X_0 representa a umidade inicial do material.

A curva normalizada de taxa de secagem (TSN) foi desenvolvida a partir do modelo de Hodges (1982) conforme a Equação 12. A diferença entre a TSN e a CGS reside no fato da primeira normalizar o valor da taxa de secagem instantânea (R) enquanto esta última apenas considera o seu valor máximo (R_{max}).

$$TSN = \frac{R}{R_{max}} = 1 - \exp\left[-\left(\frac{X_{adm}}{\alpha_2}\right)^{\beta_2}\right]$$
(12)

Em que α_2 e β_2 são os parâmetros do modelo a serem estimados.

Determinação do coeficiente de difusividade e da energia de ativação: A migração da umidade do interior do material sólido para sua superfície, por unidade de tempo, é um fenômeno difusional descrito matematicamente por meio da segunda lei de Fick (Equação 13). Nessa lei, o coeficiente de difusividade, D, representa a proporcionalidade entre a taxa de evaporação de água a partir da superfície do material e a difusão interna da umidade.

$$\frac{\partial X}{\partial t} = D \cdot (\nabla^2 X) \tag{13}$$

Em que $\partial X/\partial t$ representa a taxa de secagem ($g_{H_2O} g^{-1}_{solido \ seco} \min^{-1}$); D é o coeficiente de difusividade (m² s⁻¹) e $\nabla^2 X$ representa a difusão da umidade ao longo do material sólido.

A solução da segunda lei de Fick foi desenvolvida por Crank (1975) considerando distribuição uniforme de umidade, que a difusão intrapartícula é o mecanismo dominante de transferência de massa e que a difusividade é uma constante independente da umidade da amostra. Essa solução é apresentada na Equação 14.

$$X_{adm} = \frac{X - X_e}{X_0 - X_e} = \frac{8}{\pi} \sum_{j=0}^{\infty} \frac{1}{(2j+1)^2} \exp\left(-\frac{(2j+1)^2 \cdot \pi^2 \cdot D \cdot t}{4 \cdot L^2}\right)$$
(14)

Em que t é o tempo de secagem (min), L é a metade da espessura da amostra (m); j é um inteiro positivo.

Conforme apresentado por Doymaz (2007), é possível determinar a difusividade a partir da Equação 15 desde que a geometria do material em secagem tenda a uma placa infinita e que o tempo de secagem seja longo. Quando esse critério é admissível, então a aproximação apenas para o primeiro termo da soma infinita não causa erros significativos na determinação do parâmetro conforme a Equação 15. Outra condição de uso dessa equação é que a resistência externa à transferência de massa seja desprezível, ou seja, com velocidades de ar acima de 1,5 m/s.

$$\lambda = \frac{\pi^2 \cdot D}{4 \cdot L^2} \tag{15}$$

Em que λ é a inclinação (coeficiente angular), D é a difusividade efetiva e L é a metade da espessura do material submetido à secagem.

A dependência da difusividade com a temperatura é obtida a partir de uma equação tipo Arrhenius demonstrada por Vega-Gález *et al.* (2009) e apresentada na Equação 16.

$$D = D_o \exp\left(\frac{-E_a}{R \cdot T}\right) \tag{16}$$

Em que D_0 representa o fator préexponencial da equação-tipo Arrhenius (m² s⁻¹); E_a representa a energia de ativação da difusão de água, ou seja, a quantidade de energia necessária para que um mol de água se difunda através do interior do material até sua superfície e evapore (kJ mol⁻¹); R é a constante universal dos gases (8,314 kJ mol⁻¹ K⁻¹); e T é a temperatura absoluta (K).

RESULTADOS E DISCUSSÃO

Curvas de Secagem e de Taxa de Secagem

0 resíduo de milho fermentado umidade inicial apresentou média de 2,42 $g_{H_2O} g^{-1}_{sol. seco.}$ Esse valor é cerca de 7,6 vezes maior que a umidade inicial das espigas e sementes de milho, como exposto por de Araújo (2020). O teor elevado da umidade do resíduo em relação ao seu sabugo pode ser justificado pelas condições de armazenamento, visto que o resíduo se encontra disposto em local aberto, exposto às condições e variações climáticas.

As curvas de secagem do resíduo de milho nas diversas temperaturas avaliadas para as velocidades de 0,82 e 1,97 m/s estão expostas pelas Figuras 1 e 2, respectivamente. Vale ressaltar que as secagens foram realizadas com amostras diferentes em dias distintos, o que levou a diferentes valores de umidade inicial das amostras e de umidade relativa do ar ambiente.

Figura 1: Curvas de secagem a 40, 50 e 60 °C do resíduo a 0,82 m/s.

Figura 2: Curvas de secagem a 40, 50 e 60 °C do resíduo a 1,97 m/s.

A análise das figuras expôs que a umidade de equilíbrio atingida após a secagem foi, em média, de 0,004 $g_{H_{2}O}$ $g^{-1}_{solido seco}$ para a temperatura de 40 °C, 0,003 g_{H2O} g⁻¹sólido seco para 50 °C e 0,002 $g_{H_{2}O}$ g⁻¹_{sólido seco} para 60 °C. Além disso, observou-se que o tempo necessário para o processo de secagem à velocidade de 0,82 m/s foi maior em relação à velocidade de 1,97 m/s, chegando ao tempo máximo de secagem de 267 min para a temperatura de 40 °C, enquanto, para a mesma temperatura à velocidade superior, o tempo de secagem foi de 208 min. Como o aumento da temperatura resulta numa maior transferência de massa e diminui a umidade de equilíbrio dinâmico e o tempo de secagem, o resultado condiz com o esperado (Santos, 2014).

Apresentam-se, na Figura 3, as curvas de taxas de secagem nas temperaturas e velocidades avaliadas.

Figura 3: Taxas de secagem do resíduo de milho fermentado nas temperaturas de 40, 50 e 60 °C a 0,82 e 1,97 m/s.

Nota-se, pela Figura 3, que os perfis das taxas de secagem foram semelhantes, visto que, para as três temperaturas utilizadas nas velocidades de 0,82 e 1,97 m/s, foi observado apenas o período de taxa de secagem decrescente. Isso indica que a umidade presente no resíduo analisado já é inferior que o teor de umidade crítico (Santos, 2013). A figura em questão mostra, ainda, que o mecanismo físico dominante no movimento da umidade é a difusão (Menezes *et al.*, 2022). A taxa de secagem para a velocidade de 0,82 m/s variou entre 0,03 e 0,08 g_{H_2O} g⁻¹sólido seco min⁻¹, aproximadamente, a qual foi menor quando

comparada à taxa para a velocidade de 1,97 m/s. Esta velocidade apresentou variação entre 0,11 e 0,14 g_{H_2O} g⁻¹_{sólido seco} min⁻¹.

Modelagem da Secagem do Resíduo de Milho Fermentado

O ajuste dos modelos de secagem aos dados experimentais e seus parâmetros estatísticos são apresentados na Tabela 2 para a velocidade de 0,82 m/s e na Tabela 3 para a velocidade de 1,97 m/s. Para mais fácil visualização, os melhores ajustes, ou seja, com maior R^2 e menor χ^2 , foram assinalados em negrito.

Tabela 2: Parâmetros estatísticos para a secagem a 0,82 m/s do resíduo de milho fermentado

T (°C)		40		50		60
Eq.	R ²	χ^2	R ²	χ^2	R ²	χ^2
(3)	0,98311	9,83×10 ⁻⁴	0,99894	$7,52 \times 10^{-5}$	0,99163	4,90×10 ⁻⁴
(4)	0,99878	7,12×10 ⁻⁵	0,99894	$7,58 \times 10^{-5}$	0,99948	3,02×10 ⁻⁵
(5)	0,99895	6,10×10 ⁻⁵	0,9992	5,71×10 ⁻⁵	0,99957	2,50×10 ⁻⁵
(6)	0,9936	$3,72 \times 10^{-4}$	0,99935	4,62×10 ⁻⁵	0,99655	2,02×10 ⁻⁵
(7)	0,59371	0,02366	0,57064	0,0306	0,48162	0,03037
(8)	0,9996	2,34×10 ⁻⁵	0,99946	3,86×10 ⁻⁵	0,99988	7,02×10 ⁻⁶

Tabela 3: Parâmetros estatísticos	para a secagem a	1.97 m/s do	resíduo de	milho fermentado
rubelu 5. ruhumetros estutisticos	puru u beeugein u	1,77 111/0 00	1001000 00	minio rementado

T (°C)		40		50		60
Eq.	R ²	χ^2	R ²	χ^2	R ²	χ^2
(3)	0,90769	0,004	0,98269	9,01×10 ⁻⁴	0,97727	0,00117
(4)	0,99666	$1,44 \times 10^{-4}$	0,99974	1,37×10 ⁻⁵	0,99932	3,51×10 ⁻⁵
(5)	0,99665	1,45×10 ⁻⁴	0,99975	1,29×10 ⁻⁵	0,99936	3,29×10 ⁻⁵
(6)	0,97239	0,0012	0,99386	3,20×10 ⁻⁴	0,9908	4,73×10 ⁻⁴
(7)	0,49845	0,02172	0,42648	0,02989	0,3297	0,03452
(8)	0,99905	4,10×10 ⁻⁵	0,99978	1,16×10 ⁻⁵	0,99986	7,12×10 ⁻⁶

As Tabelas 2 e 3 revelaram que, em ambas as velocidades e para todas as temperaturas, dos seis modelos analisados, o que melhor se ajustou aos dados experimentais de secagem do resíduo de milho fermentado foi o modelo Dois Termos. As curvas ajustadas desse modelo foram apresentadas na Figura 4 para a velocidade de 0,82 m/s e na Figura 5 para a velocidade de 1,97 m/s, e seus parâmetros para cada temperatura foram dispostos na Tabela 4 para a menor velocidade e na Tabela 5 para a maior velocidade.

Figura 4: Ajuste do modelo Dois Termos aos dados de secagem a 0,82 m/s do resíduo de milho fermentado.

Figura 5: Ajuste do modelo Dois Termos aos dados de secagem a 1,97 m/s do resíduo de milho fermentado.

Tabela 4: Parâmetros ajustados do modelo Dois Termos para a secagem do resíduo de milho fermentado a 40, 50 e 60 °C a 0,82 m/s

Т (°С)	a 4	k 6	b3	k 7
40	0,6615	0,0143	0,3438	0,0604
50	0,1366	0,0131	0,8879	0,0268
60	0,6750	0,0254	0,3273	0,0851

Tabela 5: Parâmetros ajustados do modelo "Two Terms" para a secagem do resíduo de milho fermentado a 40, 50 e 60 °C a 1.97 m/s

		,		- ,> ·
T (°C)	a 4	k 6	b3	k 7
40	0,5792	0,0175	0,4079	0,1584
50	0,6431	0,0280	0,3477	0,1166
60	0,5824	0,0372	0,4141	0,1602

CGS e TSN

Os ajustes CGS e TSN foram feitos aos dados experimentais de secagem nas temperaturas de 40, 50 e 60 °C para as duas velocidades. Isso possibilitou a representação de seus fenômenos em qualquer uma das três temperaturas. Essas curvas foram apresentadas nas Figuras 6 e 7, respectivamente.

Figura 6: Curva generalizada de secagem do resíduo de milho fermentado.

Figura 7: Curva normalizada de taxa de secagem do resíduo de milho fermentado.

Na Tabela 6, foram dispostos os parâmetros para o ajuste de cada modelo aos dados experimentais para ambas as velocidades de secagem, juntamente com seus parâmetros estatísticos para verificação da qualidade do ajuste dos modelos.

14	rubblu 0. rubaneuos dos modelos e estatísticos para a elos e ristv				
Page (1949)			Hodges (1982)		
Parâmetros	0,82 m/s	1,97 m/s	Parâmetros	0,82 m/s	1,97 m/s
α1	1,06298	0,77852	012	0,54431	0,70116
β1	0,82644	0,70082	β2	1,86267	2,51277
\mathbb{R}^2	0,93806	0,9567	\mathbb{R}^2	0,87004	0,91899
χ^2	0,00386	0,00207	χ^2	0,01085	0,00248

Tabela 6: Parâmetros dos modelos e estatísticos para a CGS e TSN

A partir da Tabela 6, observou-se que o modelo de Page (1949), quando comparado ao Hodges modelo de (1982),apresentou coeficientes de correlação mais próximos à unidade e menores valores de chi-quadrado reduzido para ambas as velocidades de secagem utilizadas. Assim, define-se que a curva generalizada de secagem descreve melhor a cinética do processo para a faixa de temperatura entre 40 e 60 °C para o resíduo de milho fermentado do que a normalização de taxa de secagem (Diório; Pereira, 2014).

Difusividade e Energia de Ativação

Determinou-se, para cada temperatura e velocidade utilizadas durante o processo de secagem, o valor do coeficiente de difusividade da difusão da água no interior do resíduo de milho fermentado. Esses valores, juntamente com o parâmetro estatístico R², encontram-se na Tabela 7.

Tabela 7: Coeficiente de difusividade da umidade no interior do resíduo de milho fermentado seco nas temperaturas de 40 a 60 °C para as velocidades de 0,82 e 1,97 m/s

Velocidade (m/s)	Т (°С)	D (m ² s ⁻¹)	R ²
	40	$1,77 \times 10^{-7}$	0,9691
0,82	50	3,07×10 ⁻⁷	0,9838
	60	2,38×10 ⁻⁷	0,9795
1,97	40	2,19×10 ⁻⁷	0,9507
	50	3,22×10 ⁻⁷	0,9808
	60	4,51×10 ⁻⁷	0,9759

A Tabela 7 mostrou, em geral, um aumento da difusividade em relação ao aumento da temperatura e da velocidade, o que condiz com a literatura (Botelho *et al.*, 2018). O valor de difusividade para a secagem com ar na velocidade de 0,82 m/s a 50 °C foi maior que a difusividade com ar a 60 °C na mesma velocidade devido à limitação da Equação 15 utilizada para o cálculo, já que essa velocidade é menor que 1,5 m/s. Apesar disso, foi possível determinar os valores médios dos coeficientes de difusividade para as secagens a 0,82 e 1,97 m/s, os quais foram de, respectivamente, 2.38×10^{-7} e 3.22×10^{-7} m² s⁻¹.

A energia de ativação para a difusão da água foi determinada por meio da regressão

linear de uma equação-tipo Arrhenius por meio do ajuste do logaritmo natural da difusividade e o inverso da temperatura, conforme apresentado na Figura 7 para a velocidade de 0,82 m/s e na Figura 8 para 1,97 m/s.

Figura 7: Relação da difusividade com a temperatura para a secagem a 0,82 m/s.

temperatura para a velocidade de 1,97 m/s.

A partir da Figura 7, foi determinado um fator pré-exponencial, D_o , de aproximadamente $3,13 \times 10^{-5}$ m² s⁻¹ para a secagem a 0,82 m/s e, pela Figura 8, determinou-se o mesmo fator D_o de aproximadamente 0,0374 m² s⁻¹ para a velocidade de 1,97 m/s. Esses resultados representam o valor que a difusividade adquire quando a temperatura tende ao infinito. Ademais, a energia de ativação para um mol de água em difusão no interior do resíduo durante sua secagem foi estimada em 13,14 kJ mol⁻¹ para a secagem a 0,82 m/s e 31,35 kJ mol⁻¹ para a velocidade de secagem de 1,97 m/s. Para

aquela velocidade, a energia de ativação foi cerca de 30% menor que o valor médio de 19,09 kJ mol⁻¹ obtido por de Oliveira (2012) durante o estudo da cinética de secagem do grão de milho, enquanto que, para esta velocidade, o parâmetro em questão foi, aproximadamente, 60% maior. Não foram encontrados dados específicos para o resíduo de soja fermentado para fim de corroboração.

CONCLUSÃO

Este trabalho teve como objetivo realizar a secagem do resíduo de milho fermentado com ar nas temperaturas de 40, 50 e 60 °C e nas velocidades de ar de 0,82 e 1,97 m/s e ajustar modelos matemáticos aos dados experimentais. A partir da metodologia aplicada, foi observado que o resíduo possuiu elevada umidade, apresentando período de taxa de secagem decrescente para ambas as velocidades de ar. Assim, a difusão foi o mecanismo dominante, com valores médios do coeficiente de difusividade de, aproximadamente, $2,38 \times 10^{-7}$ e 3.22×10^{-7} m² s⁻¹ para as velocidades de 0.82 e 1.97 m/s, respectivamente. Ademais, o modelo Dois Termos melhor descreveu a secagem do resíduo de milho fermentado e, pela primeira vez, estimou-se a energia de ativação da secagem deste material, com valor de, aproximadamente, 13,14 kJ mol⁻¹ para aquela velocidade e 31,35 kJ mol⁻¹ para esta. Logo, concluiu-se que a melhor condição de secagem do material foi com ar na temperatura de 60 °C a 1,97 m/s.

REFERÊNCIAS

- AOAC (2005), Official methods of analysis of the Association of Official Analytical Chemists International, Gaithersburg, Washington DC.
- SANTOS, D. C. *et al.* (2014), Difusividade efetiva e energia de ativação em farinhas de grãos residuais de urucum, Comunicata Scientiae, Vol 5, p.75–82.
- BORTOLAIA, L. A. (2011), Modelagem matemática e simulação do processo de secagem artificial de grãos de soja em secadores de fluxo contínuo. PROMEC/UFRGS – Porto Alegre – RS, 148p. (tese de doutorado).

- BOTELHO, F. M. *et al.* (2018), Cinética de secagem de grãos de soja: Influência varietal, Revista Engenharia na Agricultura, Vol 26, p.13-25.
- BRUCE, D. M. (1985), Exposed-layer barley drying: three models fitted to new data up to 150 °C, Journal of Agricultural Engineering Research, Vol 32, p.337-347.
- CHEN, D. *et al.* (2012), Determination of effective moisture diffusivity and drying kinetics for poplar saw dust by thermogravimetric analysis under isothermal condition, Bioresource Technology, Vol 107, p.451-455.
- CRANK, J. (1975), The mathematics of diffusion, Oxford University Press, London.
- DE ARAÚJO, L. L. et al. (2020), Caracterização e gerenciamento dos resíduos gerados no beneficiamento das sementes de milho, Revista em Agronegócio e Meio Ambiente, Vol 14, p.939–952.
- DE OLIVEIRA, C. G. *et al.* (2001), Influência da presença de umidade em um material adsorvente na cinética da clarificação do óleo de soja, Anais do XLV CBC 2001 -Congresso Brasileiro de Cerâmica, p.0305901-0305909, Florianópolis - SC.
- DE OLIVEIRA, D. E. C. *et al.* (2012), Cinética de secagem dos grãos de milho, Revista Brasileira de Milho e Sorgo, Vol 11, p.190–201.
- DE SALES, P. F. *et al.* (2015), Produção, caracterização e aplicação do carvão ativado obtido a partir do sabugo de milho: A busca pelo reaproveitamento de um resíduo agroindustrial, Revista Virtual de Química, Vol 7, p.1174–1188.
- DIÓRIO, A.; PEREIRA, N. C. (2014), Estudo de Secagem do Bagaço de Cana de Açúcar para Aplicação como Adsorvente. DEQ/UEM, Maringá – PR. (relatório de iniciação científica).
- DOYMAZ, I. (2007), Air-drying characteristics of tomatoes, Journal of Food Engineering, Vol 78, p.1291-1297.
- FERREIRA, S. V. (2022), Cinética de secagem e caracterização física e química dos grãos de soja. IF GOIANO, Rio Verde –

GO, 29p. (trabalho de conclusão de curso).

- HENDERSON, S. M. (1974), Progress in developing the thin layer drying equation, Transactions of ASAC, Vol 17, p.1167–1172.
- HII, C. L. *et al.* (2009), Modelling using a new thin layer drying model and product quality of cocoa, Journal of Food Engineering, Vol 90, p.191-198.
- HODGES, C. R. (1982), Laboratory drying study and applications for paper machine drying, Proceedings of the Third International Drying Symposium, p.99-105, University of Birmingham, England.
- INSTITUTO BRASILEIRO DAS INDÚSTRIAS DE PELLETS, BIOMASSA E BRIQUETE (2022), Biomassa Agroindustrial: Milho. In: Instituto Brasileiro Pellets Biomassa e Briquete: Biomassa. Disponível em: https://abibbrasil.wixsite.com/institutobr pellets/biomassa-agorindustrial. Acesso em: 7 jul. 2022.
- MENEZES, M. L. *et al.* (2022), Análise da cinética e ajustes de modelos matemáticos aos dados de secagem do bagaço do maracujá-amarelo, Engevista, Vol 15, p.176-186.
- MIDILLI, A. *et al.* (2002), A new model for single-layer drying, Drying Technology, Vol 20, p.1503-1513.
- MOTTA LIMA, O. C. *et al.* (2001), Secagem condutiva/convectiva de celulose fibra longa com ar ambiente em convecção forçada, Acta Scientiarum, Vol 23, p.1389-1399.
- PAGE, G. E. (1949), Factor influencing the maximum rates of air-drying shelled corn in thin layers. Department of Mechanical Engineering, Purdue University - Purdue, USA. (dissertação de mestrado).
- RAHMAN, M. S. *et al.* (1998), Desorption isotherm and heat pump drying kinetics of peas, Food Research International, Vol 30, p.485-491.
- SANTOS, C. D. (2013), Avaliação das melhores condições de secagem de grãos de soja visando à manutenção do teor de proteínas. PPGEQ/UFRGS - Porto Alegre, RS, 65p. (dissertação de mestrado).

- TOGRUL, I. T.; PEHLIVAN, D. (2002), Mathematical modelling of solar drying of apricots in thin layers, Journal of Food Engineering, Vol 55, p.209-216.
- VEGA-GÁLVEZ, A. et al. (2009), Mathematical modelling of mass transfer during rehydration process of Aloe vera (Aloe barbadensis Miller), Food and Bioproducts Processing, Vol 87, p.254-260.
- WANG, Z. *et al.* (2007), Mathematical modelling on hot air-drying of thin layer apple pomace, Food Research International, Vol 40, p.39-46.
- YALDIZ, O. *et al.* (2001), Mathematical modeling of thin layer solar drying of sultana grapes, Energy, Vol 26, p.457-465.